ARTIFICIAL LANGUAGE LEARNING PARADIGM

Participants 80 native English speakers from JHU community

Artificial Chamorro (AC)

- VSOX word order (same as Chamorro)
- English verbs & nouns

3 novel function words / morphemes:
- zub → question marker (equivalent to what)
- po → preposition
- ka → optional, direct object gap marker

Example AC Sentences

(2) Declaratives: eating David cake po fork.
'David is eating the cake with the fork.'

(3) Yes-No Questions: eating David cake po fork?
'Is David eating the cake with the fork?'

(4) Prepositional Object (PO) Questions: zub eating David cake po __?
'What is David eating the cake with?'

(5) Direct Object (DO) Questions: zub (ka)-eating David __ po fork?
'What is David eating with the fork?'

INTRODUCTION

Goal of the Study: Investigate the learning (and use) of optional grammatical markers from variable input using an artificial language learning paradigm

Filler-Gap Dependencies

(1) The book that the author wrote __ ___ fills gaps.

Cues to Gap Positions

- Fillers are cues to the presence of a gap with no details about gap position
- If/ agreement = morphological marker on verb that unambiguously indicates the gap position (e.g., direct object gaps in Chamorro [1])

Online Processing

- Active completion of filler-gap dependencies → gap predicted in first possible syntactic position (i.e., the direct object position) without bottom-up evidence (e.g., [2,3])
- No active completion of the direct object gap in Chamorro when the wh-agreement marker is absent [1]

Main Questions: Can participants learn a new cue that is informative about the gap position? What do they learn about this cue, and can they use it in their real time processing?

RESULTS: OFFLINE COMPREHENSION

Grammatical sentences = 85.3% accurate
- Presence ka does not affect accuracy (p > 0.1)

Participants learned the word order as well as the meaning of zub & po
- Learned the position of ka, but poor at rejecting it

RESULTS: ONLINE COMPREHENSION

Design: Question-after-story design [3]
- 20 stories, AC question types (4 each)

Target Patient Fixations
- Use ka’ <30%
- Use ka’ ~50%
- Use ka’ >70%

Participants Subset of 51

Eye Tracking EyeLink 1000 Remote eye tracker (SR Research, Toronto, ON)

RESULTS: PRODUCTION

More successful at producing DO vs. PO questions (78.3% vs. 51.6%, p < 0.001)

ka-Knowers ka Use %
- Never (class 1) 17
- ≥20% (class 2) 5
- ≥50% (classes 3 & 4) 8
- >70% (classes 3 & 4) 14

Total: 44

DISCUSSION & CONCLUSION

Main Findings

Participants learned the meaning of an optional marker with limited exposure to variable input, but this knowledge was somewhat unstable as they are poor at rejecting incorrect usages of the marker & demonstrate variable production rates.

Significance

Optional grammatical markers are learnable from variable input
- Production of variability may require more input
 - Generalization of ka-usage (always vs. never use) despite 50:50 input
 - Not just pattern matching (cf. [4,6])
 - Not just more skewed input (e.g., [4,5,7])

Some evidence of online comprehension effects
- Eye tracking results differ based on production rates
- 50% ka-users look at the patient image less in marked DO questions
- 70% ka-users did not actively complete the dependency at the verb in unmarked DO questions & PO questions